US007069553B2
a2 United States Patent (10) Patent No.: US 7,069,553 B2
Narayanaswamy et al. 45) Date of Patent: Jun. 27, 20006
(54) UNIVERSAL DEPLOYMENT TOOL 6,343,280 B1* 1/2002 Clark ..oooveveieneeenninannnn, 705/55
(75) Inventors: Sreedhara Srinivasulu 6.357.047 Bl * 3/2002 Kurtze et al. weeeeveer...... 725/151
' 6,480,959 B1* 11/2002 Granger et al. 713/189
Narayanaswamy, Plano, TX (US); 6,498,791 Bl * 12/2002 Pickett et al. v.ooevvven.... 370/353
Gerald L. Boyd, Trenton, TX (US) 6.499.035 Bl * 12/2002 SObESKi w.vovvvorooo. 707/103 R
(73) Assignee; Computer Associates Think, Inc.. 6,505,160 B1* 1/2003 Levyetal 704/270
Islandia, NY (US) 6,508,709 Bl * 1/2003 Karmarkaroooovevvenn.., 463/42
) . | o | 6.526,097 Bl * 2/2003 Sethuraman et al. 375/240.2
(*) Notice: Subject to any disclaimer, the term of this 6.557.100 B1* 4/2003 KOULSON rveveeverrenn 713/100
patent 1s extended or adjusted under 35 6,614,786 BL* 9/2003 BYEIS vovvveveveverrern.. 370/353
U.S.C. 154(b) by 241 days. 6.628.644 B1* 9/2003 Nelson et al. wooovvev...... 370/352
6.636.506 B1* 10/2003 Fan ovveeeeeeeeosoeoen, 370/356
(21) Appl. No.: 10/378,503 6.679.177 B1* 1/2004 Wu et al. .ooovvvvevvenn.. 102/377
6.684387 Bl * 1/2004 Acker et al. w.oovevven.... 717/126
(22) Filed: Mar. 3, 2003 6.757.680 Bl * 6/2004 Battas et al. w.oovvevevnn.... 707/101
6,826,716 BL1* 11/2004 MASON weveveoeeoeeveereenn, 714/38

(65) Prior Publication Data
US 2004/0177352 Al Sep. 9, 2004

OTHER PUBLICATIONS
BEA WebLogic Server Assembling and Configuring Web

ications, BEA, Relase 7. ug. ,, , whole

(51) Int. CL Applicats BEA, Rel 7.0 Aug. 20, 2002, whol
GO6F 9/445 (2006.01) manualz* o | |

(52) U.S. Cl T17/173: 717/178 Dynamic Hardware Plugins in a FPGA with PArtial Run-

(58) Field of Classification Search 717/100. Lime Reconfiguration, Edison L. Horta et al, ACM, 2002 pp.

_ %
717/171, 177, 148, 173, 178; 709/221, 222, 437348

705/51; 707/200; 713/191, 150, 189, 194

See application file for complete search history. (Continued)

Primary Examiner—T1odd Ingberg

(56) References Cited (74) Attorney, Agent, or Firm—Baker Botts L.L.P.
U.S. PATENT DOCUMENTS (57) ABSTRACT

5,613,159 A * 3/1997 Colnotcocevvveenenn.n... 710/11
5,644,364 A * 7/1997 Kurtze et al. 348/584
5,654,737 A * 81997 Deretal 345/634 A System Ellld IIlE:ﬂlOd fOI‘ q deploymen‘[1:001 iS pI‘OVidEtd. The
5,903,261 A * 5/1999 Walsh et al. 715/500.1 -

deployment tool 1n one aspect assembles and deploys soft-
5,929,836 A * T7/1999 Deretal.ccco........... 345/629 :
5074454 A * 10/1999 Apfel et al 200/29 1 ware components generated by any predetermined standard
6,009,401 A * 12/1999 HOTSUNADD w.oornrvveere..... 705/1 compliant application tools. The system and method 1 one
6,014,651 A * 1/2000 Crawford 705/400 aspectisolates each application server’s specific deployment
6,067,044 A * 5/2000 Whelan et al. 342/357 .07 logic 1nto plug-in modules. A user 1s provided with a series
6,175,562 B1* 1/2001 Caveccoooeeeeevrvvnnnnnn.. 370/352 of mput tools or panels for specifying deployment variables
6,216,152 B1* 472001 Wong et al. 709/203 and customizing the deployment as needed. The customiza-
6,233,291 Bl : 52001 Shukhman et al. 375/341 tion includes the ability to select the target application server
6,233,567 Bih 5/2OOT Cohencocoevvvvvvvninnnnn. 705/59 and optionally, the target platform and operating system.
6,304,967 B1* 10/2001 Braddyc...c.cooeenii. 713/150
6,314,565 B1* 11/2001 Kenner et al. 717/171
6,334,189 B1* 12/2001 Granger et al. 713/200 20 Claims, 13 Drawing Sheets

104

Advantage Joe

Interface Classes |

Deployment

Application
Server
Daployer

.RHelper

plug-ins

102 108 112

Server Deploysr
Profile Plug-in
Manager Interface

Deployment
Wizard
Interface

106
[Platform

Selection

Command
Line

Interface

US 7,069,553 B2
Page 2

OTHER PUBLICATIONS

Software Configuration, Distribution, and Deployment of
Web-Services, Rainer Anzbock et al, ACM, Jul. 15, 2002,
pp. 649-656.%

Genuitec Announces WebLogic Plugins for WebSphere
Aplication Developer, <http://www.genuitec.com/news/
2002/NewsWSAD20020705 . htm>, Jul. 5, 2002, genuitec

web site 1 page.™

IBM, “Enterprise JAVABEANS Development Using
VisualAge for JAVA”, IBM Redbooks, SG24-5429-00, Jun.

1999 *

Development of a WWW Server Management Support

System, Yutaka Nakamura et

al, IEEE, 2002, pp. 1-8.*

Scalable Web Server Architectures, Antoine Mourad et al,

IEEE, 1997, pp. 12-16.%

* cited by examiner

069,553 B2

2

Sheet 1 of 13 US 7

Jun. 27, 2006

U.S. Patent

SN (T]
ui-bnid
JaAoidaQ

sul-bn|d

Jlako|da
IETNEIS
uonedlddy

0/}

[OId

UOIJ03[9S

wiofe|d

47

aoela)u|
oul’]
PUBLUWON

labeue
9|lj0.d
JEEY VT

JusawAo|dag

a0 Ia)u|
pIBZIM |

ladjeoH
JuswAo|dag

I

SaSSE|D) 90BLI9)U]

80 abejueApyY

y0)

US 7,069,553 B2

Sheet 2 of 13

Jun. 27, 2006

U.S. Patent

183 g3
abexoeda,jabualy

8

3INpadoid
Jusw/ojdaq ajnaax3

¢ [NISsanNg
JusWwAo|dap

poday
snjejS juawAojdag

444

s3]1j JuawAo|dag .
01j108dg Janag ¢ UBWAOIda(
uonea|jddy ajeiausg €307 5]
J66 SJA

5a|Ij Juawhojdag
210803 JoAIBS
Loneolday s)esausc)

08¢

pagr3
abeyoedalfablapy

444

wiojje|c
19A13S uone|ddy
Jo0Je} 841 0} d1 4

r&¢

(S18Y)0FZ/xeId/ussy/aor)
GRS

¢0¢

5,010
0’7’| gr3 suoddng

JETVE]S
uoneaidde ay) Jo4
3|ijoid e ajes1)

414

JoAag uoljedl|ddy
3018} 8U} 109]33

30

123°gr3 3y} $5920.4

rlc

$582014 Juwho|da

96¢

1AN8S uolenddy
10} wiojje|d

ab.e} 3y} 199(8S

¢ Id

Ve

eagr3
ay abeyoeday

660
(1q 0} apew sabueyr
0¢¢” S3A

AU
HP3 ON

8¢

yoddng uibbnjd
Janag uoijeonddyy

j0 Alliqe|eny

(s)uibryd Jonssg |
uonjeat|ddy pjojma
10 Butpeo] alweuAQ

" aimpajyoly uibnig
1S UoNeolddy

80¢

U.S. Patent Jun. 27, 2006 Sheet 3 of 13 US 7,069,553 B2

302

L

Deployment wizard interface

class invoked

304

Display server profile selection panel
to enable a user to select target
application server

306

Dynamically load a plug-in
corresponding to the selected target
application server

308

Plug-in implemented classes and
methods invoked to obtain application
server specific configuration

310

Repackage EAR file to include .
application server specific
configuration

312

Transfer, e.g., FTP

EAR file to target application
server, If remote

314

Pl

Invoke plug-in implemented

deploy method

F1G. 3

US 7,069,553 B2

007
07
| |

o
v—
Sol
-—
_4
~
W
W N
m\nu PN 1BAIRS uohevlady | 'z ssodr

] 1ani9G uoned)ddy 16 9o.l0

| lonueg uonediddy (g eJadusgap

-_ JaAJ9S uonediddy -9 21601qaAA Mw
= 0 9 isue|d}
— J0F | uonejuswa)dw| SoUIaoY L'Z'L ANk AJBQ _w_lmmm_, ~_“s_
b~ J9AIBS UONeINady G ¢ aJeydsga
&
o = 1B3ARS uoheddy o'¢ unyyp iB19S 8y} 10} Saflold
N - (G adA) Janies g3 181
-
—
—

JabJey JusAoldap oy} se ajyold Jaaas grg ue suls(]
B = - “w__mem_ JEINETS m [3-PIEZIM amnEE s

U.S. Patent

US 7,069,553 B2

Sheet 5 of 13

Jun. 27, 2006

U.S. Patent

SIE|0S

)4\

XNdH
XNui

|_______000ZSMOPUIM 10 | NSMOPUIA
- _ _XNdH| swey uuofed

uLogeld {93

liilofjeid 10

3oG-pPIEZIM Emu@o_awn_”l!_

US 7,069,553 B2

Sheet 6 of 13

Jun. 27, 2006

U.S. Patent

J A

003

Y 7T Aioyau AojdsQ
] pIOMSSE
Y) gl 138
660} 19qUINN Hod Janag gr3

1SQY|ed0] BUEN JSOH JaNsS g3

| JanI8S | 'y ssogr AW -3UBN 3]0

JONBS g3 pajoa|as ay) azIwojsn)

=[=) =

S|ie}a(] a]j01d JaAIBS gr3-pIezip| WawAojdag

AN |

US 7,069,553 B2

—
Cop
-
e~
Mw |
72 y04
o ueagabessapyiawnsuobsiy 8- B _
M, 1e["yo0i00p @m
m ¢04 Wx'L-88gf-uns - £3)
= JWwx uonedldde @
1earjoaloigoopioop (5 74
UoNeZILW0IsnY 10jdIosaq JuswAioldaq
XBE _SU3ju0) 8jil4 ¥y'3-pIeZIp JUsWAoldsg |

004

U.S. Patent

US 7,069,553 B2

Sheet 8 of 13

Jun. 27, 2006

U.S. Patent

8 Il

008

%0 _|

——————

=

<aUWRL-Jal-AUB- mo_:og_vmmm_.nmsmc -181- aa 90IN0Sal>
<Jo1-AUB-80IN0SAI>
<]9J-32In0S3)/>
<[ediound-aainosal-)|nejap/>
<pIOMSSE/>SSY dSTN<pIomsseds
<aWeU/>H3SNGIN<BWEU>
<|edioulIg-30In0Sa.-)nejap/>
<8WeRU-IPUl>|ANNSZN<aWeU-puls
<aWBU-J8)-S3l/>G7N<oWEU-]al-Sa1>
<J91-80.N0S8/>
<oUWeU-Ipuli>0O7Z AX/SWl<ouweu-puls
<8UIeU-qfo/>ueagabessapyialnsuonbsp<awey- %w
<{ie>
<pr-anbiun/>Q<pi-enbiuns
<8UIBU-3|NPOLL/>.el Y20} 00p<BUIBU-3|NPOLU>
<SUBSQ-asdIaa
</ Buiddewsjoss
<UonewIoju-oyads-l-9az(>

(/[wEBm\“mo._u_S_ UNS//-, H118N g UOREWIO;UI-D .__omam I mmm_ 3dA1LJ00i>

<{,8-41,=DuIpoous ,0'|,=UOISIBA jwx;>

10}Ip3 TAX PJezIp JuswAojdag

US 7,069,553 B2

Sheet 9 of 13

Jun. 27, 2006

U.S. Patent

4

06

006

Al0JoeJuonasuuo)aIdo |

- 0ZAX/swl

|

aweN uonduosang
olqe.ng s| (]

J0}09|9S abessa S

:AI0JOB 4 UOI}I8UUC)

aWeu [gNI uoneunsag

0ld0] @

.-'._I__I g

llllllllllllllllll

JBWINSUOD 8U) 8q |M G SIY) YDIym Joj uoneursap SWr Jo adA) ayy Ajoads

XEIE

sanyadoid uoneunsag SF

US 7,069,553 B2

Sheet 10 of 13

Jun. 27, 2006

U.S. Patent

000} O.H .w—h

——
E— T

sBuneg juswAoide(aoualsjey 82in0say

2doog buleys uoneonuayiny | edAL | sweN pspo) m

| SolUalajoy 3J3IN0S3Y

S89U3J3]9% 80IN0S3Y

US 7,069,553 B2

.] eweniaw

sbuiag juawAo|da aousia}ay JUSLIUOIIAUT 821N0SOY

Sheet 11 of 13

&3
T e 1 ewenewon | @

S30US.819} JUBWIUOJIAUT 82.N0SaY

Jun. 27, 2006

SgJUBI1ajoy JUSWUOQIIAUS 93JN0SSY 7

00/}

U.S. Patent

US 7,069,553 B2

Sheet 12 of 13

Jun. 27, 2006

U.S. Patent

002! ¢l Il

B
=
— 6601 :1504|e20] uc 1aAIag uonedlddy | vz ssogr
p8)03|9s sueageae asudioul
Jel"yoop00p-108(014¥00[00p
5 :bulAo)daq

'sabueyo
ayew 0) sabed snolasid 0} uinyal 0) Yoeg X117 "pa1as|as noA suondo ay) ale aisH

XEB _

Jnduj WIjuod - pIezip JuswiAoidaq |

US 7,069,553 B2

Sheet 13 of 13

Jun. 27, 2006

U.S. Patent

00¢! ¢l D14

=
SJO1I9 () YIIM papus Buissanold-
(6601 :150U|E00|) JaALag ucnedlddy | 'z ssogf uo yuawAodap pausiuld
~ peysiul
"*$5820.d Jayjoue AQ pasn buiaq si)1 asnesaq aji} ay)
$S9J0B JOUURD $S8001d 8Y] - |WX LI-88Z-uns\4N|-V 1 JINN02(0i4)00[copdw | \dwa)p:2
A10}03lIp Gm_o_axoo__oommﬂwﬂmmmﬂwm
SA0WIA) pUe SJUU0D AIOJ8MIP BU) 8)8|ep
xﬁatixiiiascmm_o
183198(014%0000p103l01 4400 I00p\INdINo\30rabe)uBAPYB0[E\:D
)0aloigyoopoopdw | \dwa)\:2 1eq-iersjepdniuig\aorabejueapwyiaoiey.n
5 1ea193l014%00}400p 8|1} ¥y pakoidaq
XIBIB Paysiul4{ Snjeis - pIezipn ﬂcmE>Qamal

UsS 7,069,553 B2

1
UNIVERSAL DEPLOYMENT TOOL

TECHNICAL FIELD

The present application relates to computer systems, and
particularly, to a system and method for assembling and
deploying software components to a target server or plat-
form.

BACKGROUND

Middle tier applications, also referred to as application
servers, typically sit on top of a wide range of existing
enterprise systems such as database management systems,
transaction monitors, and naming and directory services.
Many of these application servers are built based on stan-
dard specifications such as the Java 2 Platiorm, Enterprise
Edition (J2EE) to provide portability and scalability to
applications managing and accessing various enterprise sys-
tems.

I2EE, for example, defines a specification for developing
enterprise applications to follow as a standard. J2EE bases
the enterprise applications on standardized, modular com-
ponents, by providing a set of services to those components,
and by handling many details of application behavior auto-
matically. J2EE includes support for Enterprise JavaBeans
(EJB) components, Java Servlets API, JavaServer Pages and
Extended Marked-up Language (XML) technology.

Accordingly, an application built conforming to the J2EE
standard specification may be deployed to an application
server that supports the J2EE standards, thus allowing the
deployed application to manage and access various
resources provided by the underlying enterprise systems via
the application server. Briefly, deployment 1s the process of
distributing and configuring various part of application
programs such as J2EE applications to approprate locations
in application servers.

Although J2EE provides standard specifications for appli-
cation servers and applications running on these application
servers, each application must be deployed according to
vendor or application server provider’s specific criteria. In
most cases, each vendor supplying the application server
also provides deployment methods and tools for deploying
applications to its application server specifically. Further,
applications developed 1n a particular application server
development environment are limited to deploying to that
application server only. Thus, to deploy applications to
different application servers, multiple development environ-
ment tools may need to be used to develop the applications
for deploying.

Different deployment methods for different application
servers mean that users need to learn multiple methods of
deployment and keep up with numerous and changing
deployment tools provided by different application server
providers. Similarly, users need to learn and use multiple
development environment tools for developing the applica-
tions for deployment. Accordingly, what 1s needed 1s a
universal deployment tool that would allow a user to deploy
applications and components built using any development
environment tools to be assembled and deployed to any
other application server.

SUMMARY

A system and method for a deployment tool 1s provided.
The deployment tool in one aspect assembles and deploys
program modules or software components generated by any

10

15

20

25

30

35

40

45

50

55

60

65

2

predetermined standard compliant application tools. The
system and method 1n one aspect 1solates each application
server’s specific deployment logic ito plug-in modules. A
user 1s provided with a series of input tools or panels for
specifying deployment variables and customizing the
deployment as needed. The customization includes the abil-
ity to select the target application server and optionally, the
target platform and operating system. The system and
method provided may be run in a standalone mode and/or
may be integrated into a development tool from which 1t
may be started.

In one aspect, the system comprises a deployment module
operable to determine a target application server to which to
deploy one or more program modules. The system also
includes a common set of program definitions for a plug-in
module to implement for interacting with the deployment
module. The common set of program definitions are used by
the plug-in module and the deployment module to configure
target application server specific information for deploying
to the target application server. The common set of program
definitions may include object-oriented interface definitions
defining methods and vanables, which the plug-in module
may implement for customizing the plug-in for the particular
target application server.

In another aspect, the system may provide one or more
plug-in modules. For example, the system may provide a
plug-in module corresponding to each target application
server that the system may support. The plug-in modules
implement the common set of program defimitions, provid-
ing customization related to target application server specific
configurations for the associated target application server.

Yet 1n another aspect, a method for deploying program
modules or files comprises determining a target application
server to deploy one or more program modules and dynami-
cally loading a plug-in module associated with the target
application server for determining configuration information
related to the target application server. Deployment files are
updated with the determined configuration information and
the program modules are repackaged with the updated
deployment files. The repackaged file 1s then ready to be
deployed to the target application server by invoking a
deploy routine implemented 1n the plug-in. In one aspect, for
those application servers that are located remotely from the
system that 1s running the deployment tool of the present
disclosure, the repackaged file 1s transierred to the target
application server, for example, using the FTP (file transfer
protocol), before the deploy routine 1s 1nvoked.

Further features as well as the structure and operation of
vartous embodiments are described i1n detail below with
reference to the accompanying drawings. In the drawings,
like reference numbers indicate identical or functionally
similar elements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an architectural diagram illustrating the deploy-
ment tool in one embodiment.

FIG. 2 1s a functional diagram 1illustrating an overview of
the deployment process in one embodiment.

FIG. 3 1s process flow diagram that illustrates the deploy-
ment method 1n one embodiment.

FIGS. 4-13 are examples of screen panels in one embodi-
ment that are presented to a user for guiding the user through
deployment process and collecting deployment information
relating to particular target application servers.

UsS 7,069,553 B2

3
DETAILED DESCRIPTION

The present disclosure describes a system and method for
deploying software or program units, also referred to as
program files or program modules to any middle tier appli-
cations or application servers complying with a predeter-
mined specification standard. An example of such predeter-
mined specification standard includes J2EE and an example
of such software umts includes components. Thus, for
example, the system and method in the present disclosure
provides an ability to deploy Enterprise JavaBeans (EJBs),
web applications, and servlets, etc. to various application
servers. Deployable EJBs may include stateless session
beans, stateful session beans, bean managed persistence
entity beans, container managed persistence entity beans,
message driven beans and web components or applications,
but not limited to only such components.

Thus, for example, the system and method provided in the
present disclosure enables deployment to J2EE 1.3 Refer-
ence Implementation and application servers such as
Weblogic, Websphere, iplanet, Jrun, Oracle91, or any other
application servers on platforms such as N'T, Windows 2000,
Solaris, AIX, HP, Linux, and AS/400.

In the following description, well-known functions and
components are not described 1n detail. Thus, many known
features and definitions related to J2EE standard spec1ﬁca-
tion and Java programming methods are not described in
detail. Further, although the system and method disclosed 1s
described with reference to J2EE and Java environment, this
standard specification 1s used as an example only. Thus, it
should be understood that the system and method for a
deployment tool disclosed herein are not limited to use with
J2EE and Java applications only, but may also apply to other
such standards and specifications.

FIG. 1 1s an architectural diagram illustrating the system
and method for a deployment tool of the present disclosure
in one embodiment. The deployment tool of the present
disclosure implements a deployment wizard interface 102
and 1s mvoked to begin deploying various application com-
ponents to an application server. A deployment wizard
interface 102 includes a functionality to present a user with
various 1nput panels and message panels to guide the user
through the deployment process. Alternatively, deployment
wizard interface 102 may be mmvoked on a command line
interface and the user may run the deployment process
without any presentation panels.

Deployment wizard interface 102 defines a number of
methods and variables that may be implemented to use the
deployment tool. For example, deployment tool classes may
implement the following deployment wizard methods to
provide its functionalities. getDeploymentModules(), which
returns a list of EAR files to be deployed; setDeployer,
which sets the deployer for the active deployment plugin;
getDeployer, which returns the deployer for an active
deployment plugin; getHelper, which returns the deploy-
ment helper interface; 1sstopped, which returns true 1f the
deployment has been stopped; packageFiles, which pack-
ages the EAR files to be deployed; processFinish, whish 1s
executed when the finish button 1s pressed; getPlugin-
Bundle, which returns the resource bundle being used by the
active plugin; getBundle(), which returns the bundle being
used by the deployment wizard; i1sXmlEditorAllowed,
which returns true i1if the XML editor can be invoked;
iIsRunninglnsidejoe, which returns true 11 the deploy tool has
been mmvoked by Advantage Joe, a development environ-
ment; getContextRoot, which gets the context root for the
project; getEjbRets, which gets b references for a war or

10

15

20

25

30

35

40

45

50

55

60

65

4

a project; setContextRoots, which sets the context root
HashMap using the context root settings from application-
xml files 1n the ear file; showSunlJ2eeRi(), which returns
true 1t the sun-j2ee-ri.xml file 1s to be shown 1n the ejb tree.

In one embodiment, two classes implement the deploy-
ment wizard interface 102. One class 104 communicates
with a development environment tool iterface 104, such as
the Advantage Joe interface, and may be imnvoked within the
development environment tool. The other class 106 receives
input from a command line and 1s referred to as a command
line interface.

The deployment tool of the present disclosure uses a
plug-in architecture to isolate and modularize application
specific functionalities and properties unique to each appli-
cation server. Examples of the unique functionalities and
properties may include application server specific security
information and factors such as whether caching 1s to be
performed. Other application server specific criteria include
a particular location of an application server where the EAR
file needs to be stored, whether an EAR file needs to be
pre-processed to include application server required classes.
Further, many application servers generally require that
application server specific deployment descriptors be used.

Accordingly, application specific deployment configura-
tion and functionalities for a given target application server
are encapsulated into a plug-in module 110 for that target
application. The plug-in modules 110 implement a plug-in
deplovyer interfaces 112 and other helper interfaces to eflect
communication between the classes 104 106 that implement
the deployment wizard interface 102.

In one embodiment, the classes 104 and 106, which
implement the deployment wizard interface 102, requests a
server profile selection to determine which server profile 1s
to be used to deploy a specified package of components or
applications such as the archive J2EE application (EAR)
file. For example, one or more plug-ins that are currently
installed are determined and used to form a list of available
target servers. That 1s, 1f an IBM Websphere plug-in 1s
installed, then the Server Profile Manager 108 returns IBM
Websphere application server as one of the candidate target
SErvers.

In one embodiment, a server profile panel 1s presented to
a user to select a target server from a list of target servers
determined as described above. A user may select one from
the list or may specily a new target application server,
creating a new server profile and installing a plug-1n asso-
ciated with the new server.

As known to those skilled in the art, a plug-in refers to an
accessory program that enhances a main application. Plug-
ins are program units that may be added to the main
application without aflecting the main application. Because
the deployment tool of the present disclosure uses a plug-in
architecture for application specific functionalities, addi-
tional target application servers may be added easily by, for
example, adding plug-ins for those new target application
servers. Accordingly, new application servers for deploy-
ment may be added dynamically without having to change
or modily other parts of the deployment tool.

Typically, a deployer, that 1s, a person performing the
deployment selects a server type and defines a server profile
108 that 1s used to save deployment settings. Server profile
108 may already have been created previously, for example,
from a previous deployment session to the same application
server. Server profiles 108 are created for servers that have
corresponding plug-ins 110 that implement the deployer
interface 112. For example, server profiles are created and
saved by the server profile manager 108 and are populated

UsS 7,069,553 B2

S

with the information provided by the user during the deploy-
ment process. Server profiles store information needed by
the plug-in, including such information as the profile name,
host name, and the port number. Other information 1n a
server profile may include the type of deployment platform,
file transfer protocol (“itp”) user i1dentifier (*1d”), ftp pass-
word, and deployment directory. Additional information
needed for a particular application server may be requested
from the user during the deployment process and stored 1n
the server profile.

Once a plug-in implements the deployer interface 112, the
deployment tool class 104 or 106 may determine which
plattorms are supported by the plug-in by invoking an
instance of the plug-in method that implements the deployer
interface 112. For example, a class i the plug-in imple-
menting an interface provided for communicating platform
information to the deployment tool class 104 or 106, for
instance, the MultiPlatformPlugin interface defininig get-
plattorms method, may provide a list of the platforms
supported by that particular plug-in. After a platform 1s
selected as shown at 114, a corresponding plug-in 110 1s
activated to package the EAR file.

A deployer helper interface 116 may be used by the
plug-ns 110 and provides access to one or more methods for
requesting services ol the deployment tool classes 104 or
106 implementing the deployment wizard interface 116. For
instance, after the EAR file 1s packaged, a user may edit the
deployment descriptors using the deployer helper interface.
The deployer helper interface 116 1s passed to a plug-in,
when the plug-in 1s activated by the deployment tool 104 or
106. Prior to displaying a summary page for a packaged
EAR file, the deployment tool 104 or 106 may optionally
display the contents of the packaged EAR file to be modi-
fied. The modifications may be performed using the helper
interface dialogs or by using a provided XML editor.

The packaged EAR file 1s then deployed to the selected
target application server using the deploy method imple-
mented by the plug-ins. For instance, the deploy method
may be invoked from the deployment tool classes 104, 106
that implement the deployment wizard interface 102 FIG. 2

illustrates an overview of a deployment process in one
embodiment. Although FIG. 2 shows E

EJB.ear 202 as com-
ponents that are being packaged and deployed, the deploy-
ment tool of the present disclosure 1s enabled to handle a
complete EAR file, which may contain both the EJB and
web application components, and other files. Deployable
components may be created by using any one of the avail-
able enterprise development environment tools. One such
tool 1s Advantage Joe 3.0, which provides capability for
modeling, building, and deploying components onto an
application server. The disclosed deployment tool, 1n one
embodiment, combines the Java archives (JAR) files and
incorporates them into Enterprise archive (EAR) files, which
may then be deployed to a target application server; regard-
less of which tools were used to create the JAR files and
EAR files.

JAR files typically include one or more J2ZEE modules
making up a J2EE application. A J2EE module 1s a collec-
tion of one or more J2EE components of the same compo-
nent type such as web and EJB. Each J2EE module typically
includes a corresponding deployment descriptor that con-
tains declarative data required during the deployment of the
components 1n the module.

A J2EE application includes one or more J2EE modules
and one J2EE application deployment descriptor. J2EE
application deployment descriptor generally describes the

WAR and EJB JAR files and includes security and database

10

15

20

25

30

35

40

45

50

55

60

65

6

information specific to the application, 1if any. A J2EE
application 1s packaged using the Java archive (JAR) file
format nto a file with ear filename extension. When com-
posing a J2EE application, J2EE modules used in the
application are selected, an application directory structure 1s
created, J2EE module deployment descriptors are created, a
deployment descriptor for the J2EE application 1s created,
and the J2EE application 1s packaged.

Referring back to FIG. 2, the EAR file 202 received.
Alternatively, a deployment tool of the present disclosure,
may receive mput 1n the form of module selection and model
information, for example, if the deployment tool 1s being
invoked as part of a development environment. That 1is,
when operating as an integrated part of a development tool
such as Advantage Joe, the deployment tool, 1n one embodi-
ment, 1s supplied with development tool’s information
model, a directory of J2EE modules packaged 1in JAR files,
and a project selection.

A development tool’s mnformation model may include
detailed information about the application such as descrip-
tion of the classes and internal logic and relationships
between the classes. A project selection may be used to build
and deploy project related objects, for example, by selecting
from a list of objects including classes, specifications, meth-
ods, parameters, projects, and jars. Accordingly, a project
selection allows the deployment tool to locate the particular
project output built using a development environment tool.
This output may include an output directory containing
classes resulting from the build process and also any appli-
cable jar files created during the build process in the devel-
opment environment tool. The deployment tool 1n the
present disclosure uses the project selection information to
access the development tool’s mnformation model and the

output directory in order to package the J2EE modules into
an EAR file 202.

At 204, input EAR file 202 1s processed. For example, the
EAR file 202 1s expanded 1nto 1ts individual components so
that one or more deployment descriptors 1n the EAR file 202
may be extracted and modified. The deployer interfaces
provided 1n the present disclosure may be used to modify the
deployment descriptors. For instance, although the supplied
or constructed EAR files 202 contain deployment descrip-
tors, these descriptors may need to be modified prior to the
actual deployment to a target application server. As known
to those skilled 1n the art, a deployment descriptor refers to
an XML file provided for each module and application, and
describes how the modules and applications are to be
deployed.

At 206, a target application server to which the EAR file
1s to be deployed 1s selected. The selection may, for example,
be determined by presenting the user with a list of available
application servers that have corresponding plug-ins 208 and
allowing the user to select an application server from the list.
In addition, the user is given an option to enter a new
application server not listed 1n the list. At 210, a plug-in
corresponding to the selected application server 1s dynami-
cally loaded. At 212, any other plug-ins that are available
may also be dynamically loaded at this time. At 214, a
profile 1s created for the selected application server if one
does not exist already. For example, a new application server
may need a corresponding application server profile created.
This application server profile includes information such as
the host name and the port number of the target application
server to which the EAR files 1s being deployed. At 216, a
validity check 1s performed to make sure that the EAR file
includes a valid version of a deployment descriptor and

conforms to valid data type definitions (DTD). As known to

L1

UsS 7,069,553 B2

7

those skilled 1n the art, the deployment descriptors are XML
files and, therefore, need to be associated with a valid
document type declaration provided in a DTD. At 218, 1t 1s
determined whether the DTD needs to be edited, and 1f so,
at 220, appropriate changes are made to DTD.

For example, a user wanting to include any application
server security tags for the deployment may edit the DTD
file. At 222, the EAR file 1s repackaged. The repackaged
EAR file may contain modified DTD FILE and descriptors.
At 224, a target platform for the selected application server
1s selected. The selection may be determined, for example,
by presenting a list of platforms that the selected application
server runs on, and allowing the user to select a platform
server from the list. The list of platforms supported by the
selected application server 1s provided by the corresponding
plug-1n via, for example, the plug-in interface method 1mple-
mented by the corresponding plug-in.

At 226, deployment process begins. The deployment
process may begin, for example, 11 a user presses a finish
button after having selected a platform from the list of the
platform presented to the user. In this case, the user pressing,
the finish button, or performing any analogous activity to
indicate that all customizations pertaining to the selected
application server are complete, triggers a deploy method
implemented by the plug-in to be mvoked.

The following steps are processed within the plug-in. At
228, a determination 1s made as to whether the deployment
1s to take place to the local server or to a remote server
connected by a network, by for example, examining the
deployment properties listed 1n the deployment descriptors
in the EAR file or the user inputs. It 1t 1s determined that the
EAR file 1s being deployed to a remote server, application
server specilic deployment descriptor files are generated at
230. If the deployment tool 1s being invoked as part of an
integrated development environment tool, these application
server specific deployment descriptor files may be generated
within the environment tool. If the deployment tool 1s being,
invoked on a command line interface, these application
server specific deployment descriptor files may be generated
using the data from the processed EAR file shown at 204 and
any other input obtained from the user during the deploy-
ment process. For example, 11 the target application server 1s
a weblogic application server, a weblogic-ejb-jar.xml file
may be generated as the deployment descriptor.

The deployment descriptor files may include, for
example, the platform selected by the user as described
above, and any other EJB properties that the user specified.
For example, deployment of message driven EJBs requires
that the user supply several pieces of information about the
message queues to be supported. The system and method of
the present disclosure provides one or more user interface
panels to collect this information. That 1s, the one or more
user interface panels help a person doing the deployment to
specily mformation relating to message driven beans. The
deployment tool of the present disclosure also allows the
user to edit the deployment descriptors directly. After the
deployment descriptors have been updated or generated, the
EAR 1s reconstructed or repackaged with the modified
deployment descriptors at 232. The resulting EAR file 1s
then sent to the target application server at 234, for example,
by using a file transfer protocol (F1P), and the process
proceeds to step 240.

At 228, if 1t 1s determined that the EAR file 1s being
deployed to a local server, that 1s, the server sitting on the
same platform as the deployment tool, application server

10

15

20

25

30

35

40

45

50

55

60

65

8

specific deployment files are generated. At 238, the gener-
ated application server specific deployment files are repack-
aged mnto EAR file.

At 240, a deployment procedure 1s executed by invoking
a deploy method of the deployer interface implemented by
the application server specific plug-in. At 242, it 1s deter-
mined whether the deployment was successiul, and at 244,
an appropriate deployment status report 1s generated.

In one embodiment, as described above, a plug-in 1s
implemented for a corresponding application server to
which applications and components are being deployed. In
one embodiment, one or more interfaces are provided for
plug-ins to 1implement for modilying existing deployment
descriptors, repackaging, and deploying the files to a target
application server and interacting with the deployment tool
provided 1n the system and method of the present disclosure.

For example, a plug-in for an application server imple-
ments a Deployer interface. The Deployer interface provides
various methods that a plug-in may use to deploy files to a
desired target application servers. When the plug-in 1s
instantiated, the “setHelper” method of the “Deploymen-
tHelper” interface 1s called as a first method. The Deploy-
mentHelper mterface provides a way for a plug-in to get the
information and services 1t needs after the plug-in 1s dynami-
cally loaded, for example, by a class implementing the
deployment wizard interface. Through the setHelper
method, a DeploymentHelper object may be passed into the
plug-in. In one embodiment, each plug-1n keeps a local copy
of this object and uses 1ts methods to interact with the
deployment tool of the present disclosure.

For plug-ins that support multiplatforms, a MultiPlat-
formPlugin interface i1s provided. If, for example, a plug-in
does not implement this interface, the deployment tool of the
present disclosure 1n one embodiment, assumes that the
plug-1n supports a single platform.

Replacer interface may be implemented by a plug-in. The
plug-in supplies this interface when using the convertCon-
tainers method on the DeploymentHelper interface. Con-
vertContainers method opens the EAR files and scans
through the deployment descriptors. The strings read from
the deployment descriptor are passed to the Replacer inter-
face as long as the Replacer remains active, for example,
1sActive method of the Replacer interface returns true. The
methods 1n this interface are used to modily or update the
deployment descriptors.

The checkForStart and checkForEnd methods of the
Replacer interface are called to locate the beginning and end
of strings that may need to be replaced. A string that may
need to be replaced i1s passed to “willReplace,” which
returns true 1f the string will be replaced. The newstring
method of the Replacer interface returns the replacement
string. The 1mitialize method of the Replacer interface 1s
called whenever a new deployment descriptor 1s about to be
processed.

WindowsServerPageUser interface 1s provided for plug-
ins to implement 1n case a plug-in uses a default windows
plattorm profile details page provided by the Extended-
Helper interface’s method getWindowsServerPage. This
interface provides a generic information retrieving panel,
which a plug-in can use to obtain windows platiorm profile
details from a user.

The ExtendedHelper interface generally allows a plug-in
to make use of the extended features of the deployment
helper interface. These extended features, 1n one embodi-
ment, provide default implementations of the packaging and
deployment features.

UsS 7,069,553 B2

9

UnixServerPageUser interface 1s provided for plug-ins to
implement 1n case a plug-in uses a default Unix platiorm
profile details page provided by ExtendedHelper interface’s
method, getUnmixServerPage method. This interface may be
used by a plug-in that supports Unix or Linux based plat-
forms to get Unix platform profile detail information. Alter-
natively, a plug-in may implement 1ts own profile detail page
for retrieving information related to a specific platform.

In one embodiment, a deployment tool provided 1n the
system and method of the present disclosure may be started
as a separate process using a command line interface. A
batch file, for example, JoeDeployTool.bat, may be provided
to help 1n starting the tool. The batch file sets the appropniate
classpath for the tool and activates the tool. In one embodi-
ment, the batch file 1s invoked with a location of the EAR file
to be deployed, for example, as a parameter. Thus, for
example, one usage of the batch file may be:

JoeDeployTool <EAR file location> [-ejbTree][-xmlEdi-
tor]|[-noProgress||-contextRoot warName rootName]

where,
EAR file location specifies the path of the EAR file;

-¢ib’Tree causes display of a tree view of the EAR file;

-xmlEditor allows the XML editor to be invoked to edit
deployment descriptors;

-noProgress prevents display of the final deployment
progress panel, in which case, output that 1s normally
displayed on progress page 1s sent to standard output;

-contextRoot warName rootName specifies the name of
the context root to be used when deploying a web
archive (war) file; this parameter may be repeated as
many times as necessary to specily context roots for
every war.

When the batch file, e.g., JoeDeployTool above, finishes,
it leaves a status code 1n the ERRORLEVEL. A status of
zero, for example, imndicates a successiul deployment and a
status of two, for example, indicates that deployment failed.
If a user terminates or cancels the deployment, a status of
two may be returned.

Similarly, the deployment tool provided 1n the system and
method of the present disclosure may be started from within
a development environment tool such as Advantage Joe. For
example, a class 1n the Advantage Joe implementing a
deployment wizard interface may be started by right clicking
on a project in the project tree. The menu option, “Deploy
EJB’s/War’s” may be use to start the class which implement
the deployment wizard interface.

Examples of interface defimitions for the above-described
interfaces provided to the plug-ins will now be described 1n
more detail. As described above, the Deployer interface 1s
implemented by each deployment plug-in. The following
code defines the Deployer interface 1n one embodiment:

lic interface Deployer {

lic void deploy() throws Deployment Exception;

lic void packageFiles() throws DeploymentException;
lic DeplWizPanel getNextPanel();

lic ServerProfile addProfile (String sType);

lic String getResourceString (String key);

lic void setHelper (DeploymentHelper dm);

1c DeploymentHelper getHelper ();

pu
pu
pu
pu
pu
pu
pu
pu

R e " T T e e

The deploy() method 1s called to begin a deployment
process, for example, when a user clicks a finish button from
user 1interface panel that 1s provided by a deployment tool for
stepping the user through the deployment process. These

10

15

20

25

30

35

40

45

50

55

60

65

10

user interface panels allow the user to enter application
server specific variables and start the deployment. The
deploy() method performs the deployment of all modules
packaged in an EAR file as specified in the deployment
descriptors. If an error occurs, it throws a DeploymentEx-
ception. Fach plug-in may have its own status and error
messages displayed during execution.

The packageFiles() method 1s called prior to displaying
a summary page. The summary page, for example, may
allows a deployer to verily the deployment options before
initiating deployment to the target application server. This
method packages one or more files to be deployed. The
packaged files 1n general result in an EAR file, but need not
be limited to an EAR file only. If an error occurs, it throws
a DeploymentException. Each plug-in may have its own
status and error messages displayed during execution.

The getNextPanel() 1s used to display panels for collect-
ing nput data related to deployment from a user. Typically,
a deployment tool provided 1n the system and method of the
present disclosure displays an introductory page and a server
profile selection page. Each plug-in implements the subse-
quent panels through this method. Each panel may extend
cither DeplwizPanel or DeplWizSummary. The DeplWiz-
Summary extends DeplWizPanel.

The addProfile(String sType) 1s used to create a new
default server profile for a selected application server type.
For example, when a user clicks on add server profile button
on the server profile selection page, this method of a
corresponding plug-in 1s mmvoked. Fach plug-in may
includes 1ts customized ServerProfile object, for example,
J2EE_RIServerProfile, which extends ServerProfile. The
ServerProfile class provides one or more useful attributes,
and set and get methods for these attributes. A plug-in,
however may add new attributes to a child of Server Profile
object.

The getResourceString(String key) method may be used
to access resource strings, for example, via plug-in’s user
interface(UI) panels. The plug-in class that implements the
Deployer interface has a local ResourceBundle object, from
which resource strings may be accessed or returned using
this method. Generally, a ResouceBundle contains resource
strings that are paired sequences of strings. One string
represents a key and the other string represents a value
associated with the key. A Java program access the Resour-
ceBundle using the key string and the ResourceBundle
returns the value to be used. ResourceBundles are used to
allow a Java program to be customized for specific envi-
ronments including different language environments.

The setHelper(DeploymentHelper dm) method 1s used to
access the DeploymentHelper object, and returns a local
copy of that object 1n one embodiment. The Deploymen-
tHelper object will be described 1n more detail with refer-
ence to the DeploymentHelper interface.

The MultiPlatformPlugin interface 1s implemented by a
plug-in 1t the plug-in supports multiple platforms. In one
embodiment, if this interface 1s not implemented, the
deployment tool provided in the system and method of the
present disclosure assumes that only a single platform 1s
supported.

The MultiPlatformPlugin interface defines the following
methods:

public Iterator getPlatforms();
public int getNumPlatforms();
public DeplWizPanel getNextPanel(String platform).

The getplatforms() method returns Iterator of String
objects, each String object containing the name of a plat-

UsS 7,069,553 B2

11

form. Each String object 1s used to list available platiforms
from which a user may select. The getNumPlatforms()
method returns the number of platforms supported by this
plug-in. The getNextPanel(String platform) method
retrieves next panel for selecting a platform among multiple
platforms supported by the plug-in.

The Replacer interface 1s implemented by a plug-in and 1s
supplied when using the convertContainers method on the
DeploymentHelper interface. ConvertContainers method
opens the EAR files and scans through the deployment
descriptors. The strings read from the deployment descriptor
are passed to the Replacer interface when the i1sActive
method returns true. The 1sActive method returns true as
long as a plug-in still needs to convert portions of the
deployment descriptor. When the plug-in 1s done with the
deployment descriptor conversion, the i1sActive method
returns false, at which time the Replacer may complete the
conversion process. The checkForStart and checkForEnd
methods are called to locate the beginning and end of strings
which may need to be replaced. A string that may need to be
replaced 1s passed to “willReplace,” which returns true 11 the
string 1s to be replace. The newString method returns the
replacement string. The mnitialize method 1s called whenever
a new deployment descriptor 1s about to be processed. The
following methods are defined 1n the Replacer interface:

lic boolean isActive();

lic boolean willReplace(String strToReplace);

lic String newString();

lic it checkForStart(String str, int startingIndex);
lic int checkForEnd(String str, int startingIndex);
lic int endingSize();

lic void 1nitialize().

pu
pu
pu
pu
pu
pu
pu

(I R e ™ I

The 1sActive() method returns true 11 additional searches
or scans through the deployment descriptor are needed. The
willReplace(String strToReplace) method returns true 11 the
speciflied string 1s to be replaced. The parameter strloRe-
place includes the string that may need to be replaced.

The newString() method returns the replacement string.
The checkForStart(String str, int startingindex) method
returns index i1n specified string where substring to be
replaced 1s located. For example, parameter str includes a
string 1n which a starting sequence 1s searched, and param-
cter startingIndex includes a location 1n str at which to start
looking. The checkForEnd(String str, int startinglndex)
returns 1index of ending substring. For example, parameter
str includes a string to search for the ending sequence and
parameter startindex includes a location 1n str at which to
start search. The endingSize() method returns size of the
ending sequence. The mmtialize() method 1s used to reini-
tialize, typically before starting to convert another file.

The UnixServerPageUser interface defines the following
methods 1n one embodiment for getting the labels needed for
the fields on the panel:

lic String getServerNamelabel();

lic String getHostNamel.abel();

lic String getPortLabel();

lic String getUserldLabel();

lic String getPasswordLabel();

lic String getDeployLocationLabel().

pu
pu
pu
pu
pu
pu

L

The UnixServerPageUser also defines public void vali-
dateFields(String serverName, String hostname, String port-

10

15

20

25

30

35

40

45

50

55

60

65

12

Number, String userid, String password, String DeployLo-
cation) to determine whether the fields are complete. The
DeploymentHelper interface’s method, “setValidationSta-
tus” 1s called by the plug-in that implements this method to
set fields as valid or ivalid. If the fields are mncomplete or
invalid, the plug-in may use setValidateStatus to return a
false indicator.

The WindowsServerPageUser interface defines the fol-
lowing methods to get the labels needed for the fields on the
panel:

public String getServerNameLabel();
public String getHostNameLabel();
public String getPortLabel().

This interface also defines public void validateFields
(String serverName, String hostName, String portNumber)
to determine whether the fields are complete. The Deploy-
mentHelper interface’s method, “setValidationStatus” 1s
called by the implementor of this method.

The system and method of the present disclosure also
provides one or more additional interfaces that plug-ins may
implement. For example, The Deployment Helper interface
1s provided to the plug-ins to provide a way for a plug-in to
get the information and services i1t needs after being dynami-
cally loaded by the deployment wizard. The plug-in may be
built and released independent of the deployment tool.

An example definition of the DeployerHelper interface
may be:

lic interface DeployerHelper {
lic static final int SUCCESS = 0;
lic static final int FAILED = 2;
lic Vector getl2eeApplications ();
lic Vector getEjbJars(DeploymentModule de);
lic ResourceBundle getBundle();
lic void saveProfile();
lic ServerProfile getWorkingProfile();
lic Vector getHosts();
lic Boolean 1sStopped();
lic void log(String text);
lic void logError(String text);
lic void logWarning(String text);
lic void loglnformation(String text);
lic void setFinishButtonEnabled (boolean b);
lic void setNextButtonEnabled(Boolean b);
lic void setCursor(int cursorType);
lic DeplWizPanel getNextPage(Deployer deployer);
lic void updateFrameStatus();
public void saveState(DeploymentModule de, String earPath);
public int getResult();
public void setDocTypelnfo(String defaultEarDocType, String
defaultEarDtdPath, String defaultEjbDocType, String
defaultEjbDtdPath);
public void setDocTypelnfor(ResourceBundle bundle);
public void setEJB11{Boolean value);
public void setEJB11();
public void convertContainer(Replacer stringReplacer);
public Boolean 1sEjbOrWarAvailable();
public StringWriter executCommand(String cmd, Boolean
verboseOnException) throws DeploymentException;
public StringWriter executeCommand(String cmd) throws
DeploymentException;
public String getVariableValue(String variableName); }

pu
pu
pu
pu
pu
pu
pu
pu
pu
pu
pu
pu
pu
pu
pu
pu
pu
pu
pu

L A A T L T T T L R ™ I 5 T U T A T A T A A e i

L

DeploymentModules are objects that correspond to any
I2EE deployment modules. For example, DeploymentMod-
ules 1nclude a collection of deployment modules such as

ejb-jars, web archives, client jars that J2EE modules contain.
Thus, 1n the above interface definition, the

UsS 7,069,553 B2

13

getl2eeApplication() method returns a Vector of Deploy-
mentModule objects that correspond to J2EE applications,
which were selected to be deployed by a user.

The getEjbJars(DeploymentModule de) method returns a
Vector of DeploymentModule objects that correspond to
eib-jars for a given J2EE Application.

The getBundle() method returns the ResourceBundle for
the deployment tool of the present disclosure. The savePro-
file() method 1s 1nvoked 11 a profile for a given server 1s to
be saved, for example, for a future use. For example, when
a user 1s finished with a panel that collects server profile
information, this method may be invoked to save the profile
data that the user entered using the panel. In one embodi-
ment, the deployment tool provided in the present disclosure
automatically manages saving and retrieving of the Server-
Profile objects for a plug-in. This method, however, is
available for the plug-ins to also implement if desired.

The getWorkingProfile() method 1s mvoked to get the
information on the target server that a user specified for
deployment. For example, when a user selects one of the
server profile objects, the deployment tool provided 1n the
system and method of the present disclosure sets a working
profile using the selected server profile object.

The getHosts() method returns a list of unique host names
used 1n all saved Server Profile objects. If a plug-1n desires
to provide this list, for example, in a drop down list, as a
convenience to the user, this method may be used.

The 1sStopped() method 1s invoked to test 1f a deployment
wizard, through which the deployment process began, has
stopped. The plug-in then may terminated itself when this
method returns true.

The log(String text) method 1s used to display any normal
status messages once the deploy method 1s called. Any
information related to the deployment process such as steps
completed may be sent to an output window.

The logError(String text) method 1s mvoked to display
any error status messages once the deploy method is called.
Any mformation related to the deployment process, such as
exceptions, may be sent to an output window.

The logWarning(String text) method 1s used to display
any warning status messages once the deploy method 1s
called. Any information related to the deployment process
such as mmcomplete steps may be sent to an output window.

The logInformation(String text) method 1s used to display
any informational status messages once the deploy method
1s called. Information related to the deployment process such
as unusual conditions that do not atfect the output may be
sent to an output window.

The setFinishButtonEnabled(boolean b) method 1s used to
enable or disable a Finish button. The enabling and disabling
of this button may depend on a previous user input.

The setNextButtonEnabled(boolean b) method 1s used to
enable or disable a Next button. The enabling and disabling
of this button may depend on a previous user input.

The setCursor(int cursorlype) method 1s used to change
the cursor type, for example, to change the cursor to wait
cursor during a long running process.

The getNextPage(Deplover deployer) method 1s called to
get the next page to display 1n a deployment tool, for
example, the deployment wizard.

The updateFrameStatus() method 1s used to notily
deployment helper interface classes that some action
occurred on a plug-in panel. These actions may 1include
updating a data field or pressing certain buttons on the panel.
The actions which warrant a call to the deployment helper
interface classes may be determined by a plug-in.

10

15

20

25

30

35

40

45

50

55

60

65

14

The getResut() method returns an execution result of a
deployment tool that 1s invoking the plug-in, for example,
the deployment tool of the present disclosure.

The setDoclypelnfo(String defaultEarDocType, String
defaultEarDtdPath, String defaultEjbDocType, String
defaultEjbDtdPath) method 1s used to optionally override a
default DOCTYPE 1information.

The setDocTypelntor(ResourceBundle bundle) method 1s
used to optionally override a default DOCTYPE information
from the properties file.

The setEJB11(Boolean value) and setEJBII() methods are

used to optionally indicate that the target 1s compatible with
EJB 1.1 version.

The convertContainer(Replacer stringReplacer) method
1s used to convert containers using plug-in supplied string
replacer. This method 1s used to modity the deployment
descriptors and to update the JARS and EARS with modified
deployment descriptors.

The 1sEjbOrwarAvailable() returns true 11 an EJB or Web
application 1s available to deploy.

executeCommand(String ¢md, Boolean verboseOnEx-
ception) and executeCommand(String cmd) methods
execute command indicated in the parameter “cmd” 1n a

separate process. The results of the cmd are returned in a
StringWriter object. The verboseOnException parameter
tells the method to put results 1n a log on an exception.

getvariableValue(String variableName) method returns
the value of an environmental variables. The method returns
null if the variables are not defined.

Another interface provided for plug-ins to implement 1s
ExtendedHelper intertface. This interface allows a plug-in to
make use of the extended features of the helper interface,
which provide default implementations of the packaging and
deployment features.

An example defimtion of the ExtendeHelper interface
may include the following methods:

public Boolean isEarlnput();

public DeplWizPanel
getWindowsServerPage(WindowsServerPageUser pageUser);

public DeplWizPanel getUnixServerPage(UnixServerPageUser
pageUser);

public String createEarFile(DeploymentModule de, int
appCount) throws DeploymentException;

public void createRuntimeXml(DeploymnetModule de, String
carPath) throws Deployment Exception;

public void invokeCommandLine(String| | progArray, String
processID, String prevErrorMsg) throws DeploymentException;

public void invokeCommandLine(String| | progArray, String
processID) throws DeploymentException;

public void mmvokeCommandLine(String progString, String
processID) throws DeploymentException;

public void genFTPContainers(ResourceBundle bundle) throws
DeploymentException;

public void deployFTPContainers(ResourceBundle bundle)
throws Deployment Exception;

public void genContainers(ResrouceBundle bundle) throws
DeploymnetException;

public Vector getEarPath();

pubic void deployContainers(ResourceBundel bundle) throws
Deployment Exception;

public void setGenerateSql(boolean value).

In the above definition, the 1sEarInput() method returns
true 1f an EAR file was 1put to the deployment tool, for
example, when called as a standalone mode.

The getWindowsServerPage(WindowsServerPageUser
pageuser) method returns a default server details page for a
windows based server.

UsS 7,069,553 B2

15

The getUnixServerPage(UnixServerPageUser pageuser)
method returns a default server details page for a Unix based
server. This page, for example, collects ftp (file transfer
protocol) parameters.

The createEarFile(DeploymentModule de, int appCount)
method 1s used to specilty modules and sub-modules to build
an EAR file.

The createRuntimeXml(DeploymnetModule de, String
carpath) method 1s used to create a sun-j2ee-r1.xml file for
the EAR file, a deployment descriptor to J2EE Reference
Implementation.

The mvokeCommandLine(String] | progArray, String
processID, String prevErrorMsg), invokeCommandlLine
(String progString, String processID) and invokeCommand-
Line(String| | progArray, String processID) methods are
used to invoke a command using a command line interface.

The genFTPContainers(ResourceBundle bundle) method
generates EAR files to be sent via 1itp.

The deployFTPContainers(ResourceBundle bundle)
method transters the EAR files, for example, by ftp.

The genContainers(ResrouceBundle bundle) method gen-
erates the EAR files.

The getEarPath() method returns the local paths to access
the EAR files.

The deployContainers(ResourceBundel bundle) method
deploys the EAR files.

The setGenerateSql(boolean value) method allows a plug-
in to specity whether to attempt to generate SQL (sequential
query language) using the J2EE deploy tool. The parameter
“value,” for example, returns true 1 SQL 1s to be generated.
The default 1s false.

The interfaces and the defined methods shown above are
described only as examples, and should not be construed as
being the only way of implementing the system and method
provided in the present disclosure. Rather, those skilled in
the art of computer programming will appreciate that meth-
ods and 1nterface defimitions can vary while still implement-
ing similar functional procedures for achieving similar
results.

A deployment method using the deployment tool pro-
vided 1n the system and method of the present disclosure in
one embodiment will now be described with reference to
FIG. 3 and FIG. 4-13, which illustrate a plurality of panels
used during the deployment process. FIG. 3 1s a process flow
diagram that 1illustrates the deployment method in one
embodiment and also refers to the examples of classes and
methods that are mmvoked during the process. Typically, a
person acting in a role of an EJB deployer, referred to as a
user, uses the deployment tool. When the deployment tool 1s
iitiated, for example, on a command line or via a devel-
opment environment tool, a method of a deployment wizard
interface implemented by the deployment tool 1s imnvoked to
present the user with an initial panel shown 1n FIG. 4. The
panel 400 lists a list of available application servers 402 and
also a “+” button 404 and a “X” button 406. This panel
allows the user to select a target application server and to
define a server profile for the selected target application
server as shown at 304.

If no profile exists for a particular application server, a
new server profile may be added, for example, by clicking
on the “+” button 404. An “X” button 406 may be used to
delete an existing server profile. Server profiles may be
created for any application server for which there exists a
deployment plug-in. Server profiles are saved between invo-
cations of the deployment tool.

At 306, a deployment plug-in 1s dynamically loaded and
instantiated. The deployment plug-ins implement the inter-
taces described above. Multiple profiles may be maintained
for each server type. At 308, plug-in implemented methods
are mvoked to obtain application server specific configura-

5

10

15

20

25

30

35

40

45

50

55

60

65

16

tion information. This information 1s used to modity deploy-
ment descriptor files used during deployment. At 310, EAR
file having application server specific configuration infor-
mation 1s repackaged. At 312, it the selected target appli-
cation server 1s located on a remote machine, EAR file 1s
transterred, for example, by FTP, to that target application
server. At 314, a deploy method implemented by the plug-in
1s 1nvoked to deploy the EAR file to the selected target
application server.

The plug-1n implemented classes invoked at 308 include
MultiPlattormPlugin interface classes for those plug-ins that
support more than one platform. For example, the display
panel shown 1 FIG. 5 may be displayed when the plug-in’s
getNextPanel method 1s mvoked with a list of platform
supported by this plug-in. The list of platform 1s obtained by
invoking the getPlatforms method implemented by this
plug-in.

This panel 500 allows a user, that 1s, the person doing the
deployment, to select a type of platform that will be used as
the target for this deployment operation. The platforms
displayed 1n the drop-down list are supported by the plug-in.

Application server specific properties obtained through a
plug-1n may include various server profile details. The server
profile details can vary depending on the information needed
to deploy to the specified application server and platiorm.
These profile details are saved 1n the server profile and are
made available as default values the next time the server
profile 1s requested. The profile details are retrieved and
displayed, for example, using a panel shown 1 FIG. 6 as
default values by mmvoking UnixServerPageUser or Win-
dowsServerPageUser class methods. These panels are avail-
able for use by a plug-in and may be obtained from a
particular plug-in by accessing the DeploymentHelper inter-
face.

I1 the information acquired via the panel shown in FIG. 6
1s sullicient for a plug-in, then 1t may be used by a plug-in
via the DeploymentHelper interface. Alternatively, plug-ins
may implement a different profile detail panels to obtain
server profile detail information.

Once the deployment details have been specified for a
server, the EAR file 1s packaged and displayed. The user
may then modily the deployment descriptors for the J2EE
modules. The deployment descriptor may be modified in a
number of different ways. An XML editor may be used to
edit the XML files selected, for example, from a panel
showing EJB display tree illustrated in FIG. 7. Once a user
selects an XML file, other panels may be activated to open
an editor to modily selected portions of the deployment
descriptors as shown in FIG. 8. Also from the EAR file
contents panel shown 1n FIG. 7, a message driven bean, for
example, may be selected by a user 1f the user desires to
specily parameters related to the message driven bean. Once
the message driven bean 1s selected, a panel for speciiying
the parameters may be invoked.

Generally, an implemented class in the deployment tool of
the present disclosure displays a panel showing a EJB
display tree 702. The objects on the tree may be modified by
selecting different buttons 704 on the panel. The buttons are
connected to methods i1n the class, which then activate
additional panels.

Referring to FIG. 8, an XML editor provides a user with
the capability to modity the deployment descriptors 1n any
way the user desires. Alternatively, the XML editor may be
disabled by the deployment tool when 1t 1s first invoked. The
XML editor may provide formatting and highlighting spe-
cific to XML.

A JMS destination properties panel shown in FIG. 9, for
example, allows a user to specily one or more parameters
necessary to configure an EJB as a IMS (Java message
service) destination. The name of the connection factory

UsS 7,069,553 B2

17

may default to either TopicConnectionFactory or Queue-
ConnectionFactory, depending upon the message type being
used. If desired, a user may enter 1n this field the INDI name
of any JMS connection factory installed on the target J2EE
application server.

The JMS message selector 902 1s an expression that
causes mncoming messages to be filtered based upon their
properties. For example, a message selector expression may
appear as:

NewsType=‘Weather” OR NewsTypes=*‘Politics’

This message selector 902 causes only messages having a
“NewsType” property defined with a value of *Weather’ or
‘Politics’ to be received by the message consumer.

The information collected using the above-described pan-
els, also referred to as deployment properties panels, 1s used
to generate respective fields 1n the appropriate deployment
descriptors.

As known to those skilled in the art, EJB deployment
descriptor 1s an XML descriptor included 1n a Java Archive
(JAR) of an enterprise bean. This file, ¢jb-jar-xml, contains
the message bean definition, 1ts IMS message selector, the
destination type, and its subscription durability for Topics.
The descriptor fields used to represent these properties are
shown 1n the following example. Some of the information
collected 1n the above-described example panels are indi-
cated 1n 1talics:

<elb-jar>
<description>no description</description>
<display name>NewsReceiverlar</display-name:
<enterprise-beans:
<message-driven>
<description>no description</description>
<display name>NewsReceiver</display-name>
<e|b-name>NewsReceiverMessageBean</e|b-name>
<e|b-class>NewsReceiverMessageBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-selector>
NewsType="Weather’ OR NewsType="Politics’
</message-selector>
<message-driven-destinations
<destination-type>
javax.jms. Topic</destination-type>
<subscription-durability>
Durable</subscription-durability>
</message-driven-destination:
<security-identity>
<description></description>
<run-as-specified-identity>
<description></descriptions
<role-name></role-name:>
</run-as-specified-identity>
</security-identity>
</message-drivens>
</enterprise-beans>
<assembly-descriptor>
<container-transaction:
<method>
<e|b-name>NewsReceiveMessageBean</e|b-name>
<method-intf>Bean</method-intf>
<method-name>onMessage</method-name>
<method-parms:>
<method-param:>
javax.jms.Message</method-param:
</method-parms>
</method>
<trans-attribute>Required </trans-attribute>
</container-transaction:
</assembly-descriptor>
</e|b-jar>

The EAR descriptor format may difler among application
server vendors. The following example shows the format

used by the J2EE Reference Implementation application

10

15

20

25

30

35

40

45

50

55

60

65

18

server. Examples of information that may be collected using
the above-described panel and used to update the descriptor
1s shown 1n 1talics.

<|2ee-r1-specific-informations>
<Server-name></server-name:
<rolemapping></rolemapping>
<enterprise-beans>
<module-name>NewsReceiver.jar</module-name>
<unique-id>0</unique-id>
<elb>
<e|b-name>NewsRecelverMessageDrivenBean
</ejb-name>
<ndi-name>NewsTopic</indi-name>
<lor-security-config>
<transport-config>
<integrity>supported</integrity >
<confldentiality>supported</confidentiality>
<establish-trust-in-target>supported
</establish-trust-in-target>
<establish-trust-in-client>supported
</establish-trust-in- client>
</transport-config>
<as-context>
<auth-method>username_ password
</auth-method>
<realm>default</realm>
<required>true</required:
</as-context>
<sas-context>
<caller-propagation>supported
</caller-propagation>
</sas-context>
</10r-security-config>
<principal>
<name:></name:
</principal>
<jms-durable-subscription-name>MySub
</jms-durable-subscription-name:
<mdb-connection-factory>NewsConnectionFactory
</mdb-connection-factory>
</e|b>
</enterprise-beans:>
</12ee-ri-specific-information>

EJB’s that reference other resources may have the appro-
priate 1nformation added to their deployment descriptor

using a resource relerences panel provided by the system
and method of the present disclosure. FIG. 10 shows a
resource references panel 1n one embodiment. The JNDI
name, user name, and password fields are associated with
the selected resource reference.

If the resource references panel 1000 1s used to add
additional information related to resources referenced by the
EJB’s, the EJB deployment descriptor, for example, ejb-
jar.xml, shown above, need to include resource reference
definitions for the JMS objects accessed via JINDI. For
message producers sending messages to a single topic or
queue, there are only two JNDI references: the connection
factory and the topic/queue. For example, the following
session bean deployment descriptor shows how JMS refer-
ences (1n italic) are defined for a message producer that
publishes a message to a topic:

<e|b-jar>

<description>no description</description:

<display-name>NewsBroadcasterJar</display-name>

<enterprise-beans>

<SEeSSIon>

<description>no description</description>
<display-name>NewsBroadcaster</desplay-name>
<e|b-name>NewsBroadcastersessionBean</ejb-name>

UsS 7,069,553 B2

19

-continued

<home>NewsBroadcasterHome</home>
<remote>NewsBroadcasterRemote</remote>
<e|b-class>NewsBroadcasterSessionBean
</e|b-class>
<session-type>Stateless</session-type>
<transaction-type>Container<transaction-type>
<security-identity>
<description></description>
<use-caller-identity></use-caller-identity>
</security-1dentity >
<resource-ref>
<res-ref-name>jms/NewsConnectonFactory
</res-ref-name>
<res-type>javax.jms.TopicConnectionFactory
</res-types
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable
</res-sharing-scope>
</resource-ref>
<resource-env-ref>
<resource-env-ref-name> ms/NewsTopic
</resource-env-ref-name>
<resource-env-ref-type>javax.yms. Topic
</resource-env-ref-types
</resource-env-ref>
</sessionz>
</enterprise-beans:>
<assembly-descriptor>
<container-transaction>
<method>
<e|b-name>NewsBroadcasterSessionBean
</ejb-name>
<method-intf>Remote</method-intf>
<method-namex>broadcastNews</method-name:
<method-params></method-params:>
</method>
<trans-attribute>Required </trans-attribute>
</container-transaction>
</assembly-descriptor>
</e|b-jar>

In addition to speciiying references in the EJB deploy-
ment descriptor, references to the connection factory and
topic/queue names are also specified in the EAR deployment
descriptor. The EAR descriptor format may differ among
application server vendors. The following EAR descriptor
shows how these references (shown 1n italic) may be speci-
fied for deployment of a session bean publishing messages
to a topic:

<j2ee-r1-speific-information>
<server-names></server-name:
<rolemapping></rolemapping>
<enterprise-beanss
<module-name>NewsBroadcaster.jar</module-name>
<unique-1d>0</unique-id>
<elb>
<e|b-name>NewsBroadcasterSessionBean
</e|b-name>
<jndi-name>NewsBroadcaster</jndi-name>
<lor-security-config>
<transport-config>
<integrity>supported </integrity>
<confidentiality>supported
</confidentiality>
<establish-trust-in-target>supported
</establish-trust-in-target>
<establish-trust-in-client>supported
</establish-trust-in- client>
</transport-config>
<as-context=>
<auth-method>username_ password

</auth-method>

<realm>detault</realms=

10

15

20

25

30

35

40

45

50

55

60

65

20

-continued

<required>true</required:
</as-context>
<sas-context>
<caller-propagation>supported
</caller-propagation>
</sas-context>
</10r-security-config>
<resource-ref>
<res-ref-name>yms/NewsConnectionFactory
</res-ref-name>
<|ndi-name>TopicConnectionFactory
</indi-name>
<default-resource-principal>
<name>name</name:
<password>password</password>
</default-resource-principal>
</resource-ref>
<resource-env-ref>
<resource-env-ref-name>ms/NewsName
</resource-env-ref-name:
<|ndi-name>NewsTopic<jndi-name>
</resource-env-ref>
</ejb>
</enterprise-beans>
</]2ee-ri-speific-information>

FIG. 11 shows a resource environment references panel.
Resource environment references allow a resource to be
referred to by a diflerent name in the source code of the
application compared to its JNDI name. This panel 1100
may be used to allow a user, for example, a person doing the
deployment, to specily a correlation between the coded
name and the JNDI name. This allows the JNDI name to
vary between deployment environments without having to

modity the EJB source code.

FIG. 12 shows a summary panel in one embodiment. The
summary panel allows a user to verily the deployment
options before initiating deployment to the target application
server. FIG. 13 1llustrates a progress panel in one embodi-
ment. The progress panel shows the progress and results of
the deployment operations. This panel 1s optional and may
be disabled by the deployment tool.

In one embodiment, the individual plug-ins are isolated
from each other. Thus, failures 1n a particular plug-in typi-
cally do not impact other plug-ins. The deployment tool
infrastructure described herein 1s used by the plug-ins to
accomplish the deployment of specified EAR files.

The system and method of the present invention may be
implemented and run on a general-purpose computer. The
deployment tool provided in the present system and method,
for example, may be based on EJB 2.0 specification and
J2EE 1.3 blueprint. This deployment tool enables deploy-
ment of EJBs to various application servers that are, for
example, EJB 2.0 compliant and J2EE certified.

The embodiments described above are illustrative
examples and 1t should not be construed as limiting to these
particular embodiments. Various changes and modifications
may be eflected by one skilled 1n the art without departing
from the spirit or scope of the mvention as defined 1n the
appended claims. For example, although the system and
method disclosed herein has been described with respect to
J2EE and Java environment as an example for ease of
explanation, 1t 1s not limited only to such programming
environment. Further, although interfaces and classes
defined have been described to explain the operational
details of the deployment tool, 1t should be understood that
programming codes may vary. Accordingly, the present
invention 1s not limited except as by the appended claims.

UsS 7,069,553 B2

21

We claim:

1. A system for deploying program modules, comprising:

a deployment module operable to run 1n an integrated
development environment or 1n a standalone mode, the
deployment module operable to determine a target
application server to which to deploy one or more
program modules; and

at least one plug-in module, wherein the at least one
plug-1n module:

1s dynamically loadable by the deployment module;

corresponds to at least one application server and at
least one program module; and

encapsulates deployment configurations associated

with the at least one program module, the deploy-
ment configurations corresponding to the at least one
application server.
2. The system of claim 1, wherein the deployment
module 1s operable to provide a user with a list of
available target application servers to allow the user
to select a target application server.
3. The system of claim 2, wherein the deployment
module 1s operable to allow the user to add a new
target application server.
4. The system of claim 3, wherein a new plug-in
module associated with the new target application
server may be dynamically loaded to run with the
deployment module without updating the deploy-
ment module.
5. The system of claim 4, wherein the common set of
program definitions includes object oriented inter-
face definitions.
6. The system of claim 1, further including a com-
mon set of program definitions for the at least one
plug-1n module to implement for interacting with the
deployment module.
7. The system of claim 1, wherein the deployment
configurations include one or more platforms on
which the at least one application server runs.
8. The system of claim 7, wherein the deployment
configurations include mformation related to the one
or more platforms.
9. The system of claim 1, wherein the deployment
configurations include a directory structure of the
target application server.
10. The system of claim 1, wherein the deployment
configurations include security information associ-
ated with the at least one application server.
11. The system of claim 1, wherein the deployment
configurations include information related to the one
or more program modules.
12. A method for deploying program modules, com-
prising:

determining a target application server to which to deploy

one or more program modules;

dynamically loading a plug-in module associated with the
target application server and the one or more program
modules, the plus-in module encapsulating deployment
configurations associated with the one or more program
modules and the target application server;

updating a deployment file with the deployment configu-
rations:

packaging the one or more program modules and the
updated deployment file; and

deploving the packaged one or more program modules to
the target application server.
13. The method of claim 12, further including trans-
ferring the packaged one or more program modules to
the target application server.

10

15

20

25

30

35

40

45

50

55

60

65

22

14. The method of claim 13, wherein the transferring

includes transierring by file transier protocol (FTP).

15. The method of claim 12, wherein the determining,

a target application server includes determining a target

application server among a plurality of application

servers provided by different application server provid-

ers.

16. A method for providing a deployment tool for

deploying programs to one or more target application

servers, comprising:

providing a deployment module operable to determine a
target application server;
providing a set of common defimitions for a plug-in

module, wherein:

the plus-in module corresponds to at least one appli-
cation server and at least one program module; and

the plus-in module encapsulates deployment configu-
rations associated with the at least one program
module, the deployment configurations correspond-
ing to the at least one application server; and

the set of common definitions 1s usable to provide
interaction between the deployment module and the
plug-in module and also to process deployment
configurations for deploying one or more program

modules to the at least one application server.
17. The method of claim 16, further comprising:
providing one or more plug-in modules implementing the

set of common definitions, the one or more plug-in
modules associated with respective one or more appli-
cation servers.
18. Logic embodied 1n a computer readable medium,
the computer readable medium comprising code oper-
able to:

determine a target application server to which to deploy
one or more program modules;

dynamically load a plug-in module associated with the
target application server and the one or more program
modules, the plug-in module encapsulating deployment
configurations associated with the one or more program
modules and the target application server;

update a deployment file with the deployment configura-
tions;

package the one or more program modules and the
updated deployment file; and

deploy the packaged one or more program modules to the
target application, server.

19. A system for deploying one or more program
modules to a target application server, comprising;

a deployment module operable to run 1n an integrated
development environment or 1n a standalone mode, the
deployment module operable to determine a target
application server to which to deploy one or more
program modules; and

a common set of program definitions for a plug-in module
to implement for interacting with the deployment mod-
ule, the plug-in module corresponding to the target
application server and at least one program module, the
common set of program definitions used by the plug-in
module and the deployment module to configure target
application server specific information for deploying to
the target application server.

20. The system of claim 19, further comprising;

one or more plug-in modules associated with respective
one or more target application servers, the one or more
plug-in modules implementing the common set of
program definitions to determine application server
specific configurations associated with respective one
or more target application servers.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

